Asymmetric Dimethylarginine Contributes to the Impaired Response to Erythropoietin in CKD-Anemia
Erythropoietin-resistant anemia is associated with adverse cardiovascular events in patients with ESRD, but the underlying mechanism remains unclear. Here, we evaluated the role of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA). In 54 patients with advanced CKD, erythrocyte but not plasma ADMA levels independently associated with low hemoglobin values, although levels of both types of ADMA were elevated compared with those in healthy volunteers. Furthermore, erythrocyte ADMA level associated with the erythropoietin resistance index in patients receiving a weekly injected dose of erythropoiesis-stimulating agents standardized for hemoglobin levels and body weight, whereas it correlated with the erythropoietin demand index (plasma erythropoietin units divided by the hemoglobin value) in patients not receiving erythropoiesis-stimulating agents. Compared with sham-operated controls, wild-type mice with 5/6 subtotal nephrectomy (Nx), a remnant kidney model with advanced CKD, had decreased hemoglobin, hematocrit, and mean corpuscular volume values but increased erythrocyte and plasma ADMA and plasma erythropoietin levels. In comparison, dimethylarginine dimethlaminohydrolase-1 transgenic (DDAH-1 Tg) mice, which efficiently metabolized ADMA, had significant improvements in all of the values except those for erythropoietin after 5/6 Nx. Additionally, wild-type Nx mice, but not DDAH-1 Tg Nx mice, had reduced splenic gene expression of erythropoietin receptor and erythroferrone, which regulates iron metabolism in response to erythropoietin. This study suggests that erythrocyte ADMA accumulation contributes to impaired response to erythropoietin in predialysis patients and advanced CKD mice via suppression of erythropoietin receptor expression.