Biomarkers in cardiorenal syndrome, a potential use in precision medicine
Abstract
Cardiorenal syndrome refers to the interrelated dysfunction of the heart or kidney resulting in a cascade of feedback mechanisms, hemodynamic, neurohormonal, and immunological and/or biochemical feedback pathways causing damage in the other organ. Cardiorenal syndrome is categorized into five clinical subtypes depending on the perceived primary precipitant of organ injury and is associated with high morbidity and mortality. Therefore, the development of tools for the earliest identification of cardiorenal syndrome in hospitalized patients is of extremely high significance to ameliorate the prognosis and outcome of these patients. There is increasing interest in identifying molecules serving as biomarkers, reflecting hemodynamic changes, heart and kidney damage and/or dysfunction and oxidative stress-induced cell damage or changes in the extracellular matrix of both the heart and kidneys. Biomarkers provide important insights into the pathophysiology of cardiorenal syndrome and are invaluable tools to predict the decrease in renal function during cardiac dysfunction and vice versa. Based on the pathophysiological mechanisms of cardiorenal syndrome, we reviewed and evaluated the available literature on serum and urinary biomarkers as predictors of kidney and/or heart injury. In addition, heart- and kidney-specific biomarkers were also evaluated based on their reference to kidney and cardiac (dys)function respectively, and whether they would provide any prediction and prognostication of cardiorenal syndrome. In this article, we discuss the current knowledge on the pathophysiology of different types of cardiorenal syndrome, examine the clinical utility of candidate biomarkers in the early diagnosis of cardiorenal syndrome, and guide treatment by evaluating the respective roles of the involved pathophysiological pathways.
Graphical abstract