Central Adiposity Increases Risk of Kidney Stone Disease through Effects on Serum Calcium Concentrations

imageSignificance Statement

Kidney stone disease is a common disorder with poorly understood pathophysiology. Observational and genetic studies indicate that adiposity is associated with an increased risk of kidney stone disease. However, the relative contribution of general and central adipose depots and the mechanisms by which effects of adiposity on kidney stone disease are mediated have not been defined. Using conventional and genetic epidemiological techniques, we demonstrate that general and central adiposity are independently associated with kidney stone disease. In addition, one mechanism by which central adiposity increases risk of kidney stone disease is by increasing serum calcium concentration. Therapies targeting adipose depots may affect calcium homeostasis and help to prevent kidney stone disease.

Background

Kidney stone disease affects approximately 10% of individuals in their lifetime and is frequently recurrent. The disease is linked to obesity, but the mechanisms mediating this association are uncertain.

Methods

Associations of adiposity and incident kidney stone disease were assessed in the UK Biobank over a mean of 11.6 years/person. Genome-wide association studies and Mendelian randomization (MR) analyses were undertaken in the UK Biobank, FinnGen, and in meta-analyzed cohorts to identify factors that affect kidney stone disease risk.

Results

Observational analyses on UK Biobank data demonstrated that increasing central and general adiposity is independently associated with incident kidney stone formation. Multivariable MR, using meta-analyzed UK Biobank and FinnGen data, established that risk of kidney stone disease increases by approximately 21% per one standard deviation increase in body mass index (BMI, a marker of general adiposity) independent of waist-to-hip ratio (WHR, a marker of central adiposity) and approximately 24% per one standard deviation increase of WHR independent of BMI. Genetic analyses indicate that higher WHR, but not higher BMI, increases risk of kidney stone disease by elevating adjusted serum calcium concentrations (β=0.12 mmol/L); WHR mediates 12%–15% of its effect on kidney stone risk in this way.

Conclusions

Our study indicates that visceral adipose depots elevate serum calcium concentrations, resulting in increased risk of kidney stone disease. These findings highlight the importance of weight loss in individuals with recurrent kidney stones and suggest that therapies targeting adipose depots may affect calcium homeostasis and contribute to prevention of kidney stone disease.