Monogenic and polygenic concepts in chronic kidney disease (CKD)

Abstract

Kidney function is strongly influenced by genetic factors with both monogenic and polygenic factors contributing to kidney function. Monogenic disorders with primarily autosomal dominant inheritance patterns account for 10% of adult and 50% of paediatric kidney diseases. However, kidney function is also a complex trait with polygenic architecture, where genetic factors interact with environment and lifestyle factors. Family studies suggest that kidney function has significant heritability at 35–69%, capturing complexities of the genome with shared environmental factors. Genome-wide association studies estimate the single nucleotide polymorphism-based heritability of kidney function between 7.1 and 20.3%. These heritability estimates, measuring the extent to which genetic variation contributes to CKD risk, indicate a strong genetic contribution. Polygenic Risk Scores have recently been developed for chronic kidney disease and kidney function, and validated in large populations. Polygenic Risk Scores show correlation with kidney function but lack the specificity to predict individual-level changes in kidney function. Certain kidney diseases, such as membranous nephropathy and IgA nephropathy that have significant genetic components, may benefit most from polygenic risk scores for improved risk stratification. Genetic studies of kidney function also provide a potential avenue for the development of more targeted therapies and interventions. Understanding the development and validation of genomic scores is required to guide their implementation and identify the most appropriate potential implications in clinical practice. In this review, we provide an overview of the heritability of kidney function traits in population studies, explore both monogenic and polygenic concepts in kidney disease, with a focus on recently developed polygenic risk scores in kidney function and chronic kidney disease, and review specific diseases which are most amenable to incorporation of genomic scores.

Graphical abstract