Dnajb11-Kidney Disease Develops from Reduced Polycystin-1 Dosage but not Unfolded Protein Response in Mice

imageSignificance Statement

Heterozygous DNAJB11 mutation carriers manifest with small cystic kidneys and renal failure in adulthood. Recessive cases with prenatal cystic kidney dysplasia were recently described. Our in vitro and mouse model studies investigate the proposed disease mechanism as an overlap of autosomal-dominant polycystic kidney disease and autosomal-dominant tubulointerstitial kidney disease pathogenesis. We find that DNAJB11 loss impairs cleavage and maturation of the autosomal-dominant polycystic kidney disease protein polycystin-1 (PC1) and results in dosage-dependent cyst formation in mice. We find that Dnajb11 loss does not activate the unfolded protein response, drawing a fundamental contrast with the pathogenesis of autosomal-dominant tubulointerstitial kidney disease. We instead propose that fibrosis in DNAJB11-kidney disease may represent an exaggerated response to polycystin-dependent cysts.

Background

Patients with heterozygous inactivating mutations in DNAJB11 manifest with cystic but not enlarged kidneys and renal failure in adulthood. Pathogenesis is proposed to resemble an overlap of autosomal-dominant polycystic kidney disease (ADPKD) and autosomal-dominant tubulointerstitial kidney disease (ADTKD), but this phenotype has never been modeled in vivo. DNAJB11 encodes an Hsp40 cochaperone in the endoplasmic reticulum: the site of maturation of the ADPKD polycystin-1 (PC1) protein and of unfolded protein response (UPR) activation in ADTKD. We hypothesized that investigation of DNAJB11 would shed light on mechanisms for both diseases.

Methods

We used germline and conditional alleles to model Dnajb11-kidney disease in mice. In complementary experiments, we generated two novel Dnajb11−/− cell lines that allow assessment of PC1 C-terminal fragment and its ratio to the immature full-length protein.

Results

Dnajb11 loss results in a profound defect in PC1 cleavage but with no effect on other cystoproteins assayed. Dnajb11−/− mice are live-born at below the expected Mendelian ratio and die at a weaning age with cystic kidneys. Conditional loss of Dnajb11 in renal tubular epithelium results in PC1 dosage-dependent kidney cysts, thus defining a shared mechanism with ADPKD. Dnajb11 mouse models show no evidence of UPR activation or cyst-independent fibrosis, which is a fundamental distinction from typical ADTKD pathogenesis.

Conclusions

DNAJB11-kidney disease is on the spectrum of ADPKD phenotypes with a PC1-dependent pathomechanism. The absence of UPR across multiple models suggests that alternative mechanisms, which may be cyst-dependent, explain the renal failure in the absence of kidney enlargement.