Gut microbiota disturbances and protein-energy wasting in chronic kidney disease: a narrative review

Abstract

Protein-energy wasting (PEW) is common in patients with chronic kidney disease (CKD) and is associated with increased morbidity and mortality, and lower quality of life. It is a complex syndrome, in which inflammation and retention of uremic toxins are two main factors. Causes of inflammation and uremic toxin retention in CKD are multiple; however, gut dysbiosis plays an important role, serving as a link between those entities and PEW. Besides, there are several pathways by which microbiota may influence PEW, e.g., through effects on appetite mediated by microbiota-derived proteins and hormonal changes, or by impacting skeletal muscle via a gut-muscle axis. Hence, microbiota disturbances may influence PEW independently of its relationship with local and systemic inflammation. A better understanding of the complex interrelationships between microbiota and the host may help to explain how changes in the gut affect distant organs and systems of the body and could potentially lead to the development of new strategies targeting the microbiota to improve nutrition and clinical outcomes in CKD patients. In this review, we describe possible interactions of gut microbiota with nutrient metabolism, energy balance, hunger/satiety signals and muscle depletion, all of which are strongly related to PEW in CKD patients.

Graphical abstract