Channel Function of Polycystin-2 in the Endoplasmic Reticulum Protects against Autosomal Dominant Polycystic Kidney Disease

Background

Mutations of PKD2, which encodes polycystin-2, cause autosomal dominant polycystic kidney disease (ADPKD). The prevailing view is that defects in polycystin-2–mediated calcium ion influx in the primary cilia play a central role in the pathogenesis of cyst growth. However, polycystin-2 is predominantly expressed in the endoplasmic reticulum (ER) and more permeable to potassium ions than to calcium ions.


Methods

The trimeric intracellular cation (TRIC) channel TRIC-B is an ER-resident potassium channel that mediates potassium–calcium counterion exchange for inositol trisphosphate–mediated calcium ion release. Using TRIC-B as a tool, we examined the function of ER-localized polycystin-2 and its role in ADPKD pathogenesis in cultured cells, zebrafish, and mouse models.


Results

Agonist-induced ER calcium ion release was defective in cells lacking polycystin-2 and reversed by exogenous expression of TRIC-B. Vice versa, exogenous polycystin-2 reversed an ER calcium-release defect in cells lacking TRIC-B. In a zebrafish model, expression of wild-type but not nonfunctional TRIC-B suppressed polycystin-2–deficient phenotypes. Similarly, these phenotypes were suppressed by targeting the ROMK potassium channel (normally expressed on the cell surface) to the ER. In cultured cells and polycystin-2–deficient zebrafish phenotypes, polycystin-2 remained capable of reversing the ER calcium release defect even when it was not present in the cilia. Transgenic expression of Tric-b ameliorated cystogenesis in the kidneys of conditional Pkd2-inactivated mice, whereas Tric-b deletion enhanced cystogenesis in Pkd2-heterozygous kidneys.


Conclusions

Polycystin-2 in the ER appears to be critical for anticystogenesis and likely functions as a potassium ion channel to facilitate potassium–calcium counterion exchange for inositol trisphosphate–mediated calcium release. The results advance the understanding of ADPKD pathogenesis and provides proof of principle for pharmacotherapy by TRIC-B activators.