Serum and urinary biomarkers to predict acute kidney injury in premature infants: a systematic review and meta-analysis of diagnostic accuracy
Abstract
Background
Premature infants are at high risk for acute kidney injury (AKI) and current diagnostic criteria are flawed. The objective of this study was to determine the diagnostic accuracy of urine and serum biomarkers not currently used in routine clinical practice to predict AKI in premature infants.
Method
A systematic review was performed that followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic Test Accuracy Studies (PRISMA-DTA). Data were extracted on the diagnostic accuracy of AKI biomarkers using serum creatinine or urine output as the reference standard. Quality and validity were assessed using modified Standards for Reporting Diagnostic Accuracy (STARD) criteria.
Results
We identified 1024 articles, with 15 studies (791 infants) eligible for inclusion. Twenty-seven biomarkers were identified including serum cystatin C and urinary neutrophil gelatinase-associated lipocalin (uNGAL), osteopontin, kidney injury molecule-1, epidermal growth factor, and protein S100-P. However, many were only reported by one study each. A meta-analysis could only be conducted on uNGAL (288 infants from 6 studies) using a hierarchical, random-effects logistic-regression model. uNGAL had a summary sensitivity of 77% (95% CI 58–89%), specificity of 76% (95% CI 57–88%) and AUC-SROC of 0.83 (95% CI 0.80–0.86) for the diagnosis of AKI. By utilising uNGAL, the post-test probability of AKI increased to 52% (95% CI 37–66%) with a positive test and decreased to 9% (95% CI 5–16%) with a negative test if the pre-test probability was 25%.
Conclusion
uNGAL shows promise as a diagnostically accurate biomarker for AKI in premature infants.
Graphical abstract