Prevention of hypomagnesemia in critically ill patients with acute kidney injury on continuous kidney replacement therapy: the role of early supplementation and close monitoring

Abstract

Hypomagnesemia is a common electrolyte disorder in critically ill patients and is associated with increased morbidity and mortality risk. Many clinical conditions may contribute to hypomagnesemia through different pathogenetic mechanisms. In patients with acute kidney injury (AKI) the need for continuous or prolonged intermittent kidney replacement therapy (CKRT and PIKRT, respectively) may further add to other causes of hypomagnesemia, especially when regional citrate anticoagulation (RCA) is used. The basic principle of RCA is chelation of ionized calcium by citrate within the extracorporeal circuit, thus blocking the coagulation cascade. Magnesium, a divalent cation, follows the same fate as calcium; the amount lost in the effluent includes both magnesium-citrate complexes and the free fraction directly diffusing through the hemofilter. While increasing the magnesium content of dialysis/replacement solutions may decrease the risk of hypomagnesemia, the optimal concentration for the variable combination of solutions adopted in different KRT protocols has not yet been identified. An alternative and effective approach is based on including early intravenous magnesium supplementation in the KRT protocol, and close monitoring of serum magnesium levels, especially in the setting of RCA. Thus, strategies aimed at precisely tailoring both dialysis prescriptions and the composition of KRT fluids, as well as early magnesium supplementation and close monitoring, could represent a cornerstone in reducing KRT-related hypomagnesemia.